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Abstract A method of calculating the total energy for disordered alloys is presented. A formula 
for the potential in the selfsonsistent Korringa-Kohn-Rosloker coherent-potential approximation 
is also given by using the muffin-tin approximation aftefthe variation of the total energy is made. 
This method was applied to Cu-Pd alloys. The numerical results indicate that the, disordered 
state is stable over the whole concentration range of Pd. This agrees with experiments. 

1. Introduction 

The Komnga-Kohn-Rostoker coherent-potential approximation (KKR-CPA) is very useful 
to study disordered alloys (Ehrenreich and Schwartz 1976, Faulkner 1982). The electronic 
structure for a number of disordered alloys, for, example Cu-Zn ( B a d  and Ehrenreich 
1974), Cu-Ni (Stocks et at 1978, Faulkner and'Stocks 1980), Ag-Pd (Pmdor et al 1980, 
Stocks and Winter 1982), Ni-Pd (Akai 1982). Cu-Pd (Rao et nl 1984, Winter etal 1986), 
Cu-Pt and Cu-Au (Ginatempo et nl 1990), has been clarified over the past two decades. 
Moreover, the total energy of the ground state for disordered alloys has been obtained for 
some alloy systems (Sigli et a1 1986, Johnson et ai 1990) and the KKR-CPA calculation 
has been applied to the study of the alloy phase diagram (Gyorffy et nl 1989, Gonis et 
a1 1991). In those self-consistent KKR-CPA calculations, the muffin-tin potential is derived 
by the variation principle based on the density-functional theory (Hohenberg and Kohn 
1964). .The muffin-tin potential is not, however, determined uniquely, because the potential 
is approximated to be a constant in the interstitial region outside the muffin-tin sphere. A 
formula for the muffin-tin potential was given by Jan& (1974). Janak's formula has often 
been used in first-principles calculations. The variation of the total energy with respect to 
the electron density p ( r )  is usually achieved after the muffin-tin approximation is used for 
the total-energy expression in this formula. If the muffin-tin approximation is made after 
the variation, the result is different. The former gives the minimum of the total energy 
approximated by the muffin-tin sphere exactly, and the latter gives the minimum of the 
exact energy approximately. 

In disordered alloys, the potential procedure is more complicated, because the 
configuration of atoms is not determined uniquely. Then, based on the singlesite 
approximation, it is necessary that the effects 'of other nuclei and electrons outside a 
lattice site are approximated by the average over all configurations of atoms in disordered 
alloys. Such an approximation introduces a freedom of choice of the electron density in the 
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interstitial region, which is constant in the muffin-tin approximation. In a monatomic metal 
whose atomic number is Z, the interstitial electron density is defined by 

where Q, is the volume of the interstitial region per atom and S denotes the integral in the 
muffin-tin sphere. In a substitutional disordered binary alloy, A and B atoms are assumed 
to occupy regular lattice sites randomly with probability X A  and XB respectively, where 
XA + XB = 1. Then, the interstitial electron density for a site is considered to be p t  if the 
site is occupied by an A atom or p t  if the site is occupied by a B atom. Put another way, 
the electrons outside the muffin-tin spheres are considered not to belong to an atom only. 
Then the interstitial electron density is given by X ~ p t + X ~ p t .  Both methods satisfy charge 
neutrality. Johnson etal (1990) calculated the total energies of Cu-Ni alloys with the latter 
formula and obtained good results. We have calculated the total energies of Cu-Pd alloys 
with the same method as used by them. The Cu-Pd alloy system forms solid solutions 
at any concentration of Pd. The numerical results, however, show that the disordered 
state is unstable in the Cu-rich phase. This is not in agreement with the experiments. 
Since the KKR-CPA is a single-site approximation, the electron states are calculated as for 
a neutral atom embedded in an effective medium. Namely, the wavefunctions of electrons 
are normalized in the Wigner-Seitz cell. If charge neutrality for each atom is not demanded 
in the estimation of the potential, that is not a self-consistent calculation. 

In this paper, a formula is derived with the interstitial electron density which satisfies 
charge neutrality on each atomic site. Moreover, the variation is achieved before the muffin- 
tin approximation in the deviation, because otherwise an unreasonable term appears. This 
method was applied to Cu-Pd disordered alloys. In this paper, the Rydberg atomic unit is 
used. 

The remainder of the paper takes the following form. In section 2 the formalism of 
the total energy and the potential is described with the approximation mentioned above. In 
section 3 the numerical technique used in this work is shown. The numerical results and 
discussion are presented in section 4. We summarize our results in section 5. 

2. Formalism 

The total energy of a solid is given by 

E = T + U + E,, (2.1) 

where T ,  U and Exc are the kinetic energy, the potential energy and the exchange-correlation 
energy respectively. The formulation of the total energy for a monatomic solid is discussed 
in detail with the muffin-tin approximation by Janak (1974). For substitutional binary alloys, 
the total energy is estimated with the average over the configurations of  atoms. 

The kinetic energy is given by 

where the first term in the bracket means summation of the eigenenergy values over all 
electron states. These states are divi,ded into core states and valence states. The core states 
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are bound near the nuclei. Then the contribution of core states is given by the average of the 
eigenenergy of core states in each atom. The valence state electrons, however, are not bound 
by an atom. The energy of valence states is given by the band-energy calculation, which 
is achieved by the KKR-CPA method for disordered alloys. In the second term of equation 
(2.2), V ( r )  and p ( r )  are the effective one-electron potential and the electron density, which 
is given by 

where G ( r ,  T ,  E )  is a Green function. The inte-4 in (2.2) is estimated over the whole 
crystal. In the muffin-tin approximation, the crystal is divided into the muffin-tin spheres 
and the interstitial region. The potential V ( r )  is replaced by the spherical average in the 
sphere and a constant value in the interstitial region. Moreover, the constant value is often 
given as zero for convenience. Then the integral is replaced by a summation of the integrals 
for each muffin-tin sphere 

The potential energy is given by 

where Z, and R, denote atomic number and atomic position of the ith atom, respectively. 
The electron density p ( r )  is replaced by the spherical average in the muffin-tin sphere and 
a constant value p& which depends on the ith atom, in the interstitial region under the 
muffin-tin approximation. These are related according to 

p; = pi - 4n 1" dr r2p(r)) 
Qo 

where R, and QO are the muffin-tin radius and the volume of an interstitial region, 
respectively, for each atom. They satisfy the following relation 

Q = Q . o + $ n R i  (2.6) 

where Q is the volume of the WignerSeitz cell that is occupied by an atom. In this work, 
the Wigner-Seitz cell is approximately replaced by a sphere, the volume of which is the 
same as that of the other sphere. All muffin-tin spheres are also assumed to have the same 
volumes. Then equation (2.4) is represented by 

where 

PO = (66) (2.10) 



5556 N Tokano et a1 

and a is the lattice constant. The constant A in (2.8) is defined by 

(2.11) 

The constants CI, Cz and A depend on cystal structure only. CI and A are calculated by 
Jan& (1974) and Coldwell-Horsfall and Maradudin (1960) respectively. The last term in 
equation (2.7) is a correction due to a self-correlation for the average. Though the necessity 
of such a correction is pointed out by Johnson @tal (1990), our result is slightly different 
from theirs. Our results are obtained by using the respective interstitial electron densities 
necessarily. The coefficients CI and CZ are tabulated in table 1 using the Wigner-Seitz 
sphere approximation. The values of CZ are less than those of C, for cubic crystals as 
shown in table 1. The contribution of the term with CZ, however, is not so small. The 
results of the total-energy calculation for Cuo.sPdo.5 alloy with the Cz term and those without 
it are shown in figure 1. 

Table 1. Values of CI (Jan& 1974) given by (2.8). CZ given by (2.9) and C) given by (2.18) 
(unic Rydberg). 

Lattice CI C? C? -~ 
sc 3.116685 -0.41796649 3.683203 6 
BCC 4.085521 -0.05636973 4.408699 I 
FCC 4.8320664 -0.01148907 5.4587683 

The exchange-correlation energy is given by 

Ex, = (1 d3r ~(7%~&(791) (2.12) 

in the local-density approximation (Kohn and Sham 1965) v :re is giver j Perdew and 
Zunger (1981). The integral region is divided into Wigner-Seitz cells. Then, the average 
of the energy is replaced by the average of the integral over each cell in which either an A 
or B atom exists. The electron density outside the muffin-tin sphere, however, is arbitrary 
whether po or pi. In this work, pi  is used because this choice has led to the lower total 
energy as a result of the numerical calculations. 

The potential and the electron density on one atom site are different from those on 
another site in disordered alloys, even if those sites are occupied by the same atoms, because 
the surroundings are not the same site by site. In the KKR-CPA, they are approximately 
replaced by ones for an atom embedded in an effective medium. They should satisfy the 
Kahn-Sham equation in the density-functional theory (DFC) in order to estimate the total 
energy of the ground state, In the OFT, the potential of the ith site is given by the variation 
of the energy with respect to the electron density of the ith site as follows: 

K ( T )  = GU/Spi(r) + GExc/Spi(r) .  (2.13) 

The first term is obtained by 

(2.14) 
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using (2.3). The exchaige-correlation term is given by 

SExclaPi ( r )  = ~ L x c [ ~ i ( ~ ) l  (2.15) 

where pxc is given by Perdew and Zunger (1981). In order to make the potential zero in the 
interstitial region, the average of the potential in the interstitial region is subtracted. The 
WignerSeitz cell can be replaced approximately with a sphere. The contribution of the 
potential due to other nuclei is described with Legendre polynomials as 

(2.16) 

for R, > r .  For crystals with cubic symmetry, the terms with I = odd and I = 2 vanish. 
Since R, > k ,  the terms with I > 4 may be neglected. Then, the term with 1 = 0 only is 
left. The potential IS obtained as follows: 

0 (r > Rm) 

(2.17) 

which is tabulated in table 1, is different from C, given by (2.8). If the variation method 
is used after the muffin-tin approximanon to obtain the potential, the coefficient of the last 
term IS not C3 but CI, which IS similar to Janak’s formula 

3. Numerical consideration 

First, self-consisterit field (SCF) KKR-CPA equations are solved with the potential formula 
given by (2.17). The electron density of the valence states is calculated from (2.3) with 
the complex energy method (Johnson et al 1984), because the Green function is smooth 
as a’function of the energy of which the imaginary part is large. The integral path on the 
complex energy plane is shown in figure 2. The lowest energy E, of the real axis has been 
chosen to be -0.2 Ryd in the present work. The choice of E,  is arbitrary between the core 
state and the valence one. The imaginary part y of the path is 0.5. Ryd. The upper real 
part of the path is the Fermi energy that is determined every iteration, which is necessary 
to solve the equations self-consistently. On that path, 63 energy points are used to estimate 
the integral. The electron density due to core electrons is calculated from the Schrodinger 
equation for bound states every iteration. 

Secondly, the CPA equations are solved at each energy point for every self-consistent 
iteration. Then, the effective scattering amplitude t, is estimated with the’integral 
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Figure 1. Effect of the correction term C2 on the total 
energy of Cu".sPdo.s disordered alloy. 

Figure 2. An integral path on the complex energy 
plane. 

of k-space where Bk is the structure constant. Both te and Bk are matrices with respect to 
the angular momentum quantum number. After investigating some k-integal methods, for 
example the special-point method (Chadi and Cohen 1973), the special-dkection method 
(Bansil 1975, Fehlner and Vosko 1976) and the prism method (Stocks et al 1979), the 
following method has been used in the present calculation. The k-integral is calculated with 
the special-point method. The number of k-points needs to be 10 far away from the real axis 
and 60 near the real axis to make the k-integral converge numerically. Once the effective 
scattering amplitude te is determined with the special-point method, the scattering T matrix 
for an A or B atom embedded in an effective medium is calculated with Lloyd's (1967a, b) 
formula. In this calculation, the effective scattering amplitude & is estimated again by the 
prism method for a k-integral near the real axis, because the scattering T matrix is sensitive 
to the k-integral, though a determination of the scattering amplitude is not. In the prism 
method (Stocks et al 1979), the 1/48 reduced Brillouin zone is divided into 64 pyramids. 
In each pyramid, the one-dimensional integral is calculated from the values of the integrand 
at 30 k-points with interpolation of the numerator and the denominator of the integrand, 
respectively, because they have no singular points except free electron poles, which are 
avoided by multiplying by the factor (k2 - E,,), though the integrand has some singular 
points. Via this method, the k-integral is estimated with an accuracy of about 1 part in lo6. 
Thus, the present calculation has been made to an accuracy of about 0.1 mRyd as for the 
total energy. 

Finally, the electron density of states is defined by 

(3.2) 

for a real energy E. It takes a lot of effort to solve the KKR-CPA equations for real energies, 
because many k-points are needed to make the k-integral, given by (3.1), converge. In 
the present work, the densities of states have been estimated for complex energies E + iy 
instead of real energies E. The imaginary part y ,  which is 0.1 mRyd in this work, should 
be small enough to give similar results to those for real energies. 

4. Results and discussion 

The electronic structure and the total energy were calculated with SCF KKR-CPA for Cul,Pd, 
disordered alloys (x  = 0, 0.05, 0.25, 0.5, 0.75, 0.9, 1.0). The equilibrium lattice constants, 
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at which the total energies are minimum, are shown in figure 3 (full circles). The open 
circles are obtained experimentally by Jones and SykG (1939). The difference of the lattice 
constants is a few per cent between the calculation and the experiments. Both the calculated 
result and the experimental one, however, indicate that the dependence of the lattice constant 
on Pd concentration is different between Cu-rich alloys and Pd-rich alloys. Then, Cu-Pd 
alloys do not obey Vegard's law. The differences between calculations and experiments in 
Pd-rich alloys are considered to be caused by the sensitivity of the Fermi energy, which is 
put in the energy band. 

The heats of formation of alloys, as follows 

A H  = Etot(Cui-,Pd,) - (1 - x)E,,t(CU) - xE,,(Pd) (4.1) 

are shown in figure 4. A term due to a pressure in an enthalpy may be neglected at normal 
pressure. The heat of formation is negative~over the whole concentration of Pd. Then, the 
disordered state is more stable than the segregated state to two phases in Cu-Pd alloys. The 
concentration of Pd at which the heat of formation is minimum is not 50% but 40%. Our 
results agree with the experimental results (Hultgren etal 1973), shown by the broken curve 
in figure 4, with respect to these viewpoints, though our results are lower than experimental 
ones. 

3 0 - 5 ? S ' O m , : ~  7.5 * B  4' - c 0 ._ 
c 
U 
0 

z 
E .  '. 
0 -10 

r 

- 

- A *  .- 2 7.0 . 
I 

2 

m a, 

"% 50 100 0 50 . ~ 100 
Pd Concentration (at%) pd. , Pd concentration (at%) pd 

Figure 3. Lattice constants of Cu-Pd alloys by calcula:. ~ Figure 4. Heats of formation of Cu-Pd alloys by 
tions (full ckles )  and experiments (open symbols) by ' calculations (full curve) and experimenrs Cxoken curve) 
Jones and Sykes (1939). by Hultgren e ta l  (1973). 

The densities of states (full curve) are shown with the local densities of states for Cu 
(dotted curve) and Pd (broken curve) in figure 5 .  Our results. agree with those of Winter et 
al (1986) on the whole. At low concentration of Pd, the states of Pd are spread out by d 
states of Cu. The peak at the centre of the energy band of Pd, which is due to ds states, 
increases with Pd concentration. This peak is considered to be resonant with ds states of 
Cu. Especially, the peak is sharp at'Cuo.sPdo.,s. The density of states at the.Fermi energy 
is related to the electron specific heats. Our results (full circles) and experimental results 
(open circles) by Sat0 et al (1970) are shown in figure 6. Our results agree with those of 
Winter et a1 (1986) (broken curve), calculated with SCF-KKR-CPA. The difference between 
calculations and experiments is considered~to be due to the electron-phonon interaction. 

Finally, the numbers 2'" of electrons in the muffin-tin sphere for Cu (full circles) 
and Pd (open circles) are shown in figure 7. The number of electrons increases with Pd 
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concentration in both sites. Electrons are considered to transfer from the Pd site to the 
Cu site. Triangles denote Winter et al's (1986) results. Compared with them, our results 
indicate that the charge transfer occurs more remarkably. Johnson et al (1990) pointed 
out that charge transfer is ignored by the use of charge neutrality for each atom site. The 
charge transfer, however, should be discussed with respect to the electrons in a muffin-tin 
sphere, because the interstitial electrons are not bound by an atom. Under this consideration, 
the charge transfer is recognized even if the charge neutrality for each atom site is used. 
Moreover, the cluster KKR-CPA (Takano etnl  1991). which is a many-sites approximation, 
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is needed if the charge transfer is estimated more exactly. The total-energy calculation with 
the cluster KKR-CPA will require more effort. 

I .  . . .  I . . ) . /  

0 50 100 
Pd concentration (at%) 

Figure 6. Electron specific-heat weffinents for Cu-Pd 
alloys by our calculahon (Full circles). Winter et al's 
(1986) (broken curve) and experiments (open circles) 
by Sat0 et01 (1970). 

29.0 46.0 

2 28.5 p 6 6  * A  

N 
28.0 -> ~ 45.0 

27,5 44.5 

0 50 100 
Pd concentration (at%) 

Figure 7. Number of electrons in the muffin-tin spheres 
of Cu (full symbol$ and Pd (open symbols) in Cu-Pd 
alloys. Circles are our work; triangles are Winter e t d s  
(1986) results. 

5. Summary 

The total energy was formulated in the muffin-tin approximation for disordered alloys. In 
this formula, the correction term is derived. This term is considered to take an important 
part in the total-energy calculation. The potential is derived by the variation principle. In 
the present work, the variation was made before the muffin-tin approximation was used. 
This formula was applied to Cu-Pd alloys provided that charge neutrality for each atom 
is assumed. As a result, the Cu-Pd~ alloy system forms a solid solution over the whole 
concentration of Pd and is not governed by Vegard's law. Moreover, it is considered 
that electrons transfer from the Pd site to the Cu site and d  states of Cu and Pd make a 
resonance. Such results agree with experiments, and so the formula presented in this paper 
is reasonable. This formula is expected to give good results for other alloy systems. 

As discussed previously, the formation energy of disordered alloys is.sensitive to the 
muffin-tin approximation and charge neutrality. In particular, this tendency is strong 
in disordered alloys because of the difference of the interstitial charge densities. The 
density of states, however, is insensitive 'to them even for disordered alloys. The muffin- 
tin approximation should be made with care in order to discuss the formation energy of 
disordered alloys. 

~ 

~ 
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